广西科技大学学报

2005, (S3)

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于BP神经网络的公路隧道交通量预测
基于BP神经网络的公路隧道交通量预测

金豫杰 ,罗文广

摘要(Abstract):

准确的公路隧道交通量短期预测,可使隧道通风系统获得良好的控制效果,而良好的隧道通风系统能够有效地降低隧道中有害气体难度,对保护人身安全及其降低隧道运营成本有重要意义。本设计采用具有非线性逼近和实现全局优化能力的BP神经网络进行公路隧道交通量的短期预测。通过确定适当的BP神经网络结构,对已知的历史交痛量数据进行网络训练和学习,获得能够预测小时交通量的BP神经网络预测器。运用西门子WINCC组态软件编制界面和神经网络预测器。实验结果表明该神经网络预测器对公路隧道交通量具有较好的预测能力。

关键词(KeyWords): 公路隧道;BP神经网络;交通量预测;WINCC组态软件

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 金豫杰 ,罗文广

Email:

参考文献(References):

文章评论(Comment):

序号(No.) 时间(Time) 反馈人(User) 邮箱(Email) 标题(Title) 内容(Content)
反馈人(User) 邮箱地址(Email)
反馈标题(Title)
反馈内容(Content)
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享